Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.305
Filtrar
1.
Bioorg Med Chem ; 103: 117696, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547648

RESUMO

Aryloxy phosphoroamidate triesters, known as ProTides, are a class of prodrugs developed to enhance the physicochemical and pharmacological properties of therapeutic nucleosides. This approach has been extensively investigated in the antiviral and anticancer areas leading to three prodrugs on the market and several others in clinical stage. In this article we have prepared the PS analogues of three ProTides that have reached the clinic as anticancer agents. These novel PS ProTides were tested for their capacity in enzymatic activation and for their cytotoxic properties against a panel of solid and liquid tumor cell lines. As expected, the replacement of the PO with a PS bond led to increased metabolic stability albeit concomitant to a decrease in potency. Surprisingly, the intermediate formed after the first activation step of a thiophosphoramidate with carboxypeptidase Y is not the expected PS aminoacyl product but the corresponding PO aminoacyl compound.


Assuntos
Antineoplásicos , Pró-Fármacos , Nucleosídeos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Pró-Fármacos/química , Antivirais/farmacologia
2.
Org Biomol Chem ; 22(14): 2851-2862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516867

RESUMO

Hypochlorous acid (HOCl) released from activated leukocytes plays a significant role in the human immune system, but is also implicated in numerous diseases due to its inappropriate production. Chlorinated nucleobases induce genetic changes that potentially enable and stimulate carcinogenesis, and thus have attracted considerable attention. However, their multiple halogenation sites pose challenges to identify them. As a good complement to experiments, quantum chemical computation was used to uncover chlorination sites and chlorinated products in this study. The results indicate that anion salt forms of all purine compounds play significant roles in chlorination except for adenosine. The kinetic reactivity order of all reaction sites in terms of the estimated apparent rate constant kobs-est (in M-1 s-1) is heterocyclic NH/N (102-107) > exocyclic NH2 (10-2-10) > heterocyclic C8 (10-5-10-1), but the order is reversed for thermodynamics. Combining kinetics and thermodynamics, the numerical simulation results show that N9 is the most reactive site for purine bases to form the main initial chlorinated product, while for purine nucleosides N1 and exocyclic N2/N6 are the most reactive sites to produce the main products controlled by kinetics and thermodynamics, respectively, and C8 is a possible site to generate the minor product. The formation mechanisms of biomarker 8-Cl- and 8-oxo-purine derivatives were also investigated. Additionally, the structure-kinetic reactivity relationship study reveals a good correlation between lg kobs-est and APT charge in all purine compounds compared to FED2 (HOMO), which proves again that the electrostatic interaction plays a key role. The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.


Assuntos
Nucleosídeos , Poluentes Químicos da Água , Humanos , Nucleosídeos/química , Halogenação , Domínio Catalítico , Nucleosídeos de Purina , Ácido Hipocloroso/química , Cinética , Cloro/química , Poluentes Químicos da Água/química
3.
J Med Chem ; 67(4): 2864-2883, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345794

RESUMO

We report on the synthesis and characterization of three types of nucleoside tetraphosphate derivatives 4-9 acting as potential prodrugs of d4T nucleotides: (i) the δ-phosph(on)ate is modified by two hydrolytically stable alkyl residues 4 and 5; (ii) the δ-phosph(on)ate is esterified covalently by one biodegradable acyloxybenzyl moiety and a nonbioreversible moiety 6 and 7; or (iii) the δ-phosphate of nucleoside tetraphosphate is masked by two biodegradable prodrug groups 8 and 9. We were able to prove the efficient release of d4T triphosphate (d4TTP, (i)), δ-monoalkylated d4T tetraphosphates (20 and 24, (ii)), and d4T tetraphosphate (d4T4P, (iii)), respectively, by chemical or enzymatic processes. Surprisingly, δ-dialkylated d4T tetraphosphates, δ-monoalkylated d4T tetraphosphates, and d4T4P were substrates for HIV-RT. Remarkably, the antiviral activity of TetraPPPPro-prodrug 7 was improved by 7700-fold (SI 5700) as compared to the parent d4T in CEM/TK- cells, denoting a successful cell membrane passage of these lipophilic prodrugs and an intracellular delivery of the nucleotide metabolites.


Assuntos
Fármacos Anti-HIV , HIV-1 , Pró-Fármacos , Fármacos Anti-HIV/química , Nucleosídeos/química , Estavudina , HIV-1/metabolismo , Nucleotídeos/farmacologia , Pró-Fármacos/química
4.
ACS Chem Biol ; 19(3): 687-695, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407057

RESUMO

Natural nucleosides are nonfluorescent and do not have intrinsic labels that can be readily utilized for analyzing nucleic acid structure and recognition. In this regard, researchers typically use the so-called "one-label, one-technique" approach to study nucleic acids. However, we envisioned that a responsive dual-app nucleoside system that harnesses the power of two complementing biophysical techniques namely, fluorescence and 19F NMR, will allow the investigation of nucleic acid conformations more comprehensively than before. We recently introduced a nucleoside analogue by tagging trifluoromethyl-benzofuran at the C5 position of 2'-deoxyuridine, which serves as an excellent fluorescent and 19F NMR probe to study G-quadruplex and i-motif structures. Taking forward, here, we report the development of a ribonucleotide version of the dual-app probe to monitor antibiotics-induced conformational changes in RNA. The ribonucleotide analog is derived by conjugating trifluoromethyl-benzofuran at the C5 position of uridine (TFBF-UTP). The analog is efficiently incorporated by T7 RNA polymerase to produce functionalized RNA transcripts. Detailed photophysical and 19F NMR of the nucleoside and nucleotide incorporated into RNA oligonucleotides revealed that the analog is structurally minimally invasive and can be used for probing RNA conformations by fluorescence and 19F NMR techniques. Using the probe, we monitored and estimated aminoglycoside antibiotics binding to the bacterial ribosomal decoding site RNA (A-site, a very important RNA target). While 2-aminopurine, a famous fluorescent nucleic acid probe, fails to detect structurally similar aminoglycoside antibiotics binding to the A-site, our probe reports the binding of different aminoglycosides to the A-site. Taken together, our results demonstrate that TFBF-UTP is a very useful addition to the nucleic acid analysis toolbox and could be used to devise discovery platforms to identify new RNA binders of therapeutic potential.


Assuntos
Benzofuranos , Aplicativos Móveis , RNA Ribossômico , Antibacterianos/farmacologia , Nucleotídeos , Nucleosídeos/química , RNA Bacteriano , Uridina Trifosfato , Corantes Fluorescentes/química , RNA/metabolismo , Aminoglicosídeos/metabolismo , Conformação de Ácido Nucleico
5.
Bioorg Chem ; 144: 107143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309000

RESUMO

In this study, we report the synthesis of two formacetal (FA)-linked dimer building blocks, namely 2'-O-methyluridyl-2'-O-methyluridine and 2'-O-methyluridyl-2'-O-aminoethyluridine. We utilize the former dimer in combination with (S)-5'-C-aminopropyl-2'-O-methylnucleosides (5'-APs) as a neutral trimer unit, and the latter dimer as a cationic unit. Double-stranded RNA containing the neutral trimer unit exhibits greater stability compared to the cationic unit and maintains nuclease stability in a serum-containing buffer. Furthermore, this unit appears to establish additional hydrogen bonds with complementary bases, as supported by modeling simulations and mismatch melting temperature assays. Importantly, siRNAs modified with this unit enhance RNA interference activity in cultured cells. These findings suggest that the trimer unit holds promise for therapeutic siRNAs.


Assuntos
Endonucleases , Nucleosídeos , Nucleosídeos/química , RNA Interferente Pequeno/química , Interferência de RNA , Temperatura
6.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338431

RESUMO

In this article, we present the synthesis and the optical properties of three original molecules as potential fluorescent ribonucleoside analogues incorporating a 1,6-naphthyridin-7(6H)-one scaffold as a fluorescent nucleobase and a 1,2,3-triazole as a linkage. The nucleosides were prepared via a Cu alkyne-azide cycloaddition (CuAAC) reaction between a ribofuranosyl azide and a 4-ethynylpyridine partner. Construction of substituted 1,6-naphthyridin-7(6H)-ones was achieved through two additional steps. Optical property studies were investigated on nucleoside analogues. Powerful fluorescence properties have been evidenced with a remarkable change of emissivity depending on the polarity of the solvent, making these molecules suitable as a new class of artificial fluorescent nucleosides for investigating enzyme binding sites as well as probing nucleic acids. In addition, we are convinced that such analogues could be of great interest in the search for new antiviral or antitumoral drugs based on nucleosides.


Assuntos
Nucleosídeos , Ribonucleosídeos , Nucleosídeos/química , Azidas/química , Ribonucleosídeos/química , Corantes
7.
Anal Bioanal Chem ; 416(8): 1883-1906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367042

RESUMO

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 µm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.


Assuntos
Cordyceps , Distribuição Tecidual , Espectrometria de Massas , Cordyceps/química , Cordyceps/metabolismo , Nucleosídeos/química , Ácidos Graxos/metabolismo , Aminoácidos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
J Org Chem ; 89(3): 1556-1566, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38227951

RESUMO

Over the last century, nucleoside-based therapeutics have demonstrated remarkable effectiveness in the treatment of a wide variety of diseases from cancer to HIV. In addition, boron-containing drugs have recently emerged as an exciting and fruitful avenue for medicinal therapies. However, borononucleosides have largely been unexplored in the context of medicinal applications. Herein, we report the synthesis, isolation, and characterization of two novel boron-containing nucleoside compound libraries which may find utility as therapeutic agents. Our synthetic strategy employs efficient one-step substitution reactions between a diverse variety of nucleoside scaffolds and an assortment of n-alkyl potassium trifluoroborate-containing electrophiles. We demonstrated that these alkylation reactions are compatible with cyclic and acyclic nucleoside substrates, as well as increasing alkyl chain lengths. Furthermore, regioselective control of product formation can be readily achieved through manipulation of base identity and reaction temperature conditions.


Assuntos
Boro , Nucleosídeos , Nucleosídeos/química , Boro/química , Compostos de Boro , Alquilação
9.
Nat Chem ; 16(2): 249-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857844

RESUMO

Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.


Assuntos
Nucleosídeos , Nucleotídeos , Nucleosídeos/química , Nucleotídeos/química , Polifosfatos , Bioquímica
10.
Eur J Med Chem ; 264: 115987, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056297

RESUMO

Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Nucleosídeos/química , Antineoplásicos/química , Gencitabina , Neoplasias/tratamento farmacológico , Açúcares/uso terapêutico
11.
Curr Protein Pept Sci ; 25(2): 120-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37670708

RESUMO

Membrane protein human concentrative nucleoside transporter 3 (hCNT3) can not only transport extracellular nucleosides into the cell but also transport various nucleoside-derived anticancer drugs to the focus of infection for therapeutic effects. Typical nucleoside anticancer drugs, including fludarabine, cladabine, decitabine, and clofarabine, are recognized by hCNT3 and then delivered to the lesion site for their therapeutic effects. hCNT3 is highly conserved during the evolution from lower to higher vertebrates, which contains scaffold and transport domains in structure and delivers substrates by coupling with Na+ and H+ ions in function. In the process of substrate delivery, the transport domain rises from the lower side of transmembrane 9 (TM9) in the inward conformation to the upper side of the outward conformation, accompanied by the collaborative motion of TM7b/ TM4b and hairpin 1b (HP1b)/ HP2b. With the report of a series of three-dimensional structures of homologous CNTs, the structural characteristics and biological functions of hCNT3 have attracted increasing attention from pharmacists and biologists. Our research group has also recently designed an anticancer lead compound with high hCNT3 transport potential based on the structure of 5-fluorouracil. In this work, the sequence evolution, conservation, molecular structure, cationic chelation, substrate recognition, elevator motion pattern and nucleoside derivative drugs of hCNT3 were reviewed, and the differences in hCNT3 transport mode and nucleoside anticancer drug modification were summarized, aiming to provide theoretical guidance for the subsequent molecular design of novel anticancer drugs targeting hCNT3.


Assuntos
Antineoplásicos , Nucleosídeos , Animais , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/química , Nucleosídeos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico
12.
ChemMedChem ; 19(1): e202300474, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37751316

RESUMO

Pseudouridimycin (PUM) is a microbially produced C-nucleoside dipeptide that selectively targets the nucleotide addition site of bacterial RNA polymerase (RNAP) and that has a lower rate of spontaneous resistance emergence relative to current drugs that target RNAP. Despite its promising biological profile, PUM undergoes relatively rapid decomposition in buffered aqueous solutions. Here, we describe the synthesis, RNAP-inhibitory activity, and antibacterial activity of chemically stabilized analogues of PUM. These analogues feature targeted modifications that mitigate guanidine-mediated hydroxamate bond scission. A subset of analogues in which the central hydroxamate is replaced with amide or hydrazide isosteres retain the antibacterial activity of the natural product.


Assuntos
Antibacterianos , Nucleosídeos , Nucleosídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , RNA Polimerases Dirigidas por DNA
13.
Anal Sci ; 40(1): 85-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843729

RESUMO

Rapid and effective separation of nucleotides (NTs) and their derivatives is crucial for studying their physiological functions. In this work, we comprehensively evaluated the separation ability of a zwitterionic hydrophilic monolith, i.e., poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl)ammonium betaine-co-N,N'-methylenebisacrylamide) (poly(SPP-co-MBA)) for NTs analysis, including its selectivity, chemical stability under extremely basic condition and compatibility with hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (HILIC-MS). The poly(SPP-co-MBA) monolith exhibited excellent chemical stability, as evidenced by the low relative standard deviation of retention time (0.16-1.05%) after 4000 consecutive injections over one month under strong alkaline elution condition (pH 10). After optimizing the separation conditions, including buffer pH and concentration, organic solvent content and column temperature, four nucleoside triphosphates, five nucleoside diphosphates and five nucleoside monophosphates were baseline separated within 7 min. Additionally, the mixtures containing one nucleoside and its corresponding mono-, di-, and triphosphates were baseline separated within only 3 min, respectively. It is good HILIC-MS compatibility was also confirmed by the satisfactory peak shape and high response of nine NTs. Overall, the proposed poly(SPP-co-MBA) monolith exhibited good mechanical stability and compatibility of HILIC-MS, making it a promising technique for NTs analysis.


Assuntos
Nucleosídeos , Nucleotídeos , Nucleotídeos/análise , Nucleosídeos/análise , Nucleosídeos/química , Cromatografia Líquida/métodos , Betaína/química , Interações Hidrofóbicas e Hidrofílicas
14.
Arch Pharm (Weinheim) ; 357(3): e2300580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150650

RESUMO

In the last 50 years, nucleoside analogs have been introduced to drug therapy as antivirals for different types of cancer due to their interference in cellular proliferation. Among the first line of nucleoside treatment drugs, ribavirin (RBV) is a synthetic N-nucleoside with a 1,2,4-triazole moiety that acts as a broad-spectrum antiviral. It is on the World Health Organization (WHO) list of essential medicines. However, this important drug therapy causes several side effects due to its nonspecific mechanism of action. There is thus a need for a continuous study of its scaffold. A particular approach consists of connecting  d-ribose to the nitrogen-containing base with a C-C bond. It provides more stability against enzymatic action and a better pharmacologic profile. The coronavirus disease (COVID) pandemic has increased the need for more solutions for the treatment of viral infections. Among these solutions, remdesivir, the first C-nucleoside, has been approved by the Food and Drug Administration (FDA) for clinical use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It drew attention to the study of the C-nucleoside scaffold. Different C-nucleoside patterns have been synthesized over the years. They show many important activities against viruses and cancer cell lines. 1,2,3-Triazolyl-C-nucleoside derivatives are a prolific and efficient subclass of RBV analogs close to the already-known RBV with a C-C bond modification. These compounds are often prepared by alkynylation of the  d-ribose ring followed by azide-alkyne cycloaddition. They are reported to be active against the Crimean-Congo hemorrhagic fever virus and several tumoral cell lines, showing promising biological potential. In this review, we explore such approaches to 1,2,3-triazolyl-C-nucleosides and their evolution over the years.


Assuntos
Antivirais , Nucleosídeos , Nucleosídeos/farmacologia , Nucleosídeos/química , Antivirais/farmacologia , Antivirais/química , Ribose/farmacologia , Relação Estrutura-Atividade , SARS-CoV-2 , Linhagem Celular Tumoral , Biologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38142502

RESUMO

RNA modifications play a crucial regulatory role in a variety of biological processes and are closely related to numerous diseases, including cancer. The diversity of metabolites in serum makes it a favored biofluid for biomarkers discovery. In this work, a robust and accurate hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was established for simultaneous determination of dimethylated nucleosides in human serum. Using the established method, we were able to accurately quantify the concentrations of N6-2'-O-dimethyladenosine (m6Am), N2,N2-dimethylguanosine (m2,2G), and 5,2'-O-dimethyluridine (m5Um) in serum samples from 53 healthy controls, 57 advanced colorectal adenoma patients, and 39 colorectal cancer (CRC) patients. The results showed that, compared with healthy controls and advanced colorectal adenoma patients, the concentrations of m6Am and m2,2G were increased in CRC patients, while the concentration of m5Um was decreased in CRC patients. These results indicate that these three dimethylated nucleosides could be potential biomarkers for early detection of colorectal cancer. Interestingly, the level of m5Um was gradually decreased from healthy controls to advanced colorectal adenoma patients to CRC patients, indicating m5Um could also be used to evaluate the level of malignancy of colorectal tumor. In addition, this study will contribute to the investigation on the regulatory mechanisms of RNA dimethylation in the onset and development of colorectal cancer.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Nucleosídeos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Biomarcadores , Neoplasias Colorretais/diagnóstico , Interações Hidrofóbicas e Hidrofílicas , Adenoma/metabolismo , RNA/química , Biomarcadores Tumorais
16.
Bioorg Med Chem ; 95: 117508, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931521

RESUMO

Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 µM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.


Assuntos
Adenilil Ciclases , Organofosfonatos , Humanos , Toxina Adenilato Ciclase , Células HEK293 , Organofosfonatos/farmacologia , Nucleosídeos/química
17.
Acc Chem Res ; 56(22): 3121-3131, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944919

RESUMO

ConspectusIn recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.


Assuntos
Nucleosídeos , RNA , Humanos , Nucleosídeos/química , RNA/química , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
18.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895100

RESUMO

A variety of ribo-, 2'-deoxyribo-, and 5'-norcarbocyclic derivatives of the 8-aza-7-deazahypoxanthine fleximer scaffolds were designed, synthesized, and screened for antibacterial activity. Both chemical and chemoenzymatic methods of synthesis for the 8-aza-7-deazainosine fleximers were compared. In the case of the 8-aza-7-deazahypoxanthine fleximer, the transglycosylation reaction proceeded with the formation of side products. In the case of the protected fleximer base, 1-(4-benzyloxypyrimidin-5-yl)pyrazole, the reaction proceeded selectively with formation of only one product. However, both synthetic routes to realize the fleximer ribonucleoside (3) worked with equal efficiency. The new compounds, as well as some 8-aza-7-deazapurine nucleosides synthesized previously, were studied against Gram-positive and Gram-negative bacteria and M. tuberculosis. It was shown that 1-(ß-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19) and 1-(2',3',4'-trihydroxycyclopent-1'-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) were able to inhibit the growth of M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL, respectively. Antimycobacterial activities were revealed for 4-(4-aminopyridin-3-yl)-1H-pyrazol (10) and 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). At concentrations (MIC99) of 40 and 20 µg/mL, respectively, the compounds resulted in 99% inhibition of M. tuberculosis growth.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Nucleosídeos/farmacologia , Nucleosídeos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Pirazóis/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
19.
Adv Sci (Weinh) ; 10(36): e2306021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884485

RESUMO

Nucleoside analogs require three phosphorylation steps catalyzed by cellular kinases to give their triphosphorylated metabolites. Herein, the synthesis of two types of triphosphate prodrugs of different nucleoside analogs is disclosed. Triphosphates comprising: i) a γ-phosphate or γ-phosphonate bearing a bioreversible acyloxybenzyl group and a long alkyl group and ii) γ-dialkyl phosphate/phosphonate modified nucleoside triphosphate analogs. Almost selective conversion of the former TriPPPro-compounds into the corresponding γ-alkylated nucleoside triphosphate derivatives is demonstrated in CEM/0 cell extracts that proved to be stable toward further hydrolysis. The latter γ-dialkylated triphosphate derivatives lead to the slow formation of the corresponding NDPs. Both types of TriPPPro-compounds are highly potent in wild-type CEM/0 cells and more importantly, they exhibit even better activities against HIV-2 replication in CEM/TK- cell cultures. A finding of major importance is that, in primer extension assays, γ-phosphate-modified-NTPs, γ-mono-alkylated-triphosphates, and NDPs prove to be substrates for HIV-RT but not for cellular DNA-polymerases α,γ.


Assuntos
Fármacos Anti-HIV , HIV-1 , Organofosfonatos , Pró-Fármacos , Nucleosídeos/farmacologia , Nucleosídeos/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , HIV-1/metabolismo , Polifosfatos/farmacologia , Polifosfatos/química
20.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834006

RESUMO

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses. Here, we present the synthesis and evaluation of the antiviral activity of nucleoside analogs and their deglycosylated derivatives based on a hydroxybenzo[4,5]imidazo[1,2-c]pyrimidin-1(2H)-one scaffold. The antiviral activity was evaluated against a panel of structurally and phylogenetically diverse RNA and DNA viruses. The leader compound showed micromolar activity against representatives of the family Coronaviridae, including SARS-CoV-2, as well as against respiratory syncytial virus in a submicromolar range without noticeable toxicity for the host cells. Surprisingly, methylation of the aromatic hydroxyl group of the leader compound resulted in micromolar activity against the varicella-zoster virus without any significant impact on cell viability. The leader compound was shown to be a weak inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase. It also inhibited biocondensate formation important for SARS-CoV-2 replication. The active compounds may be considered as a good starting point for further structure optimization and mechanistic and preclinical studies.


Assuntos
Nucleosídeos , Vírus de RNA , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/química , Antivirais/farmacologia , Antivirais/química , RNA Viral , Pandemias , SARS-CoV-2 , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...